addenda and errata

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zeynep Gültekin,^a Harry Adams^b and Tuncer Hökelek^c*

 ^aZonguldak Karaelmas University, Department of Chemistry, 067100 Zonguldak, Turkey,
 ^bUniversity of Sheffield, Department of Chemistry, Sheffield S3 7HF, England, and ^cHacettepe University, Department of Physics, 06532
 Beytepe Ankara, Turkey

Correspondence e-mail: merzifon@hacettepe.edu.tr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.058 wR factor = 0.144 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(1*RS*,4*RS*)-1-Methoxyspiro[bicyclo[2.2.2]oct-5-ene-2,2'-[1',3']dithiolane]. Corrigendum

H atoms treated by a mixture of

 $w = 1/[\sigma^2(F_0^2) + (0.0805P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

refinement

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.22~{\rm e}~{\rm \AA}^{-3}$

independent and constrained

In the paper by Gültekin, Adams & Hökelek [*Acta Cryst.* (2003), E**59**, 0926–0928], the placement of H atoms bonded to C3, C4, C10 and C11 is wrong. C10=C11 is a double bond, but there are two H atoms on each C atom instead of one. On the other hand, C3–C4 is a single bond and there is one H atom on each C atom instead of two. The structure has now been rerefined with the correct assignment of H atoms and the structure is shown in Fig. 1.

Experimental

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.144$ S = 1.021983 reflections 133 parameters

Table 1

Selected geometric parameters (Å, °).

S1-C7	1.802 (5)	C2-C1	1.558 (5)
S1-C2	1.823 (4)	C2-C6	1.566 (5)
S2-C8	1.774 (7)	C4-C3	1.511 (7)
S2-C2	1.844 (4)	C4-C5	1.529 (7)
O1-C1	1.416 (4)	C5-C6	1.536 (8)
O1-C9	1.420 (5)	C7-C8	1.467 (9)
C1-C10	1.506 (6)	C11-C10	1.332 (7)
C1-C3	1.516 (6)	C11-C5	1.502 (7)
C7-S1-C2	97.3 (2)	C1-C2-S2	110.7 (3)
C8-S2-C2	99.3 (2)	C6-C2-S2	110.4 (3)
C1-O1-C9	116.2 (3)	S1-C2-S2	106.1 (2)
O1-C1-C10	114.9 (3)	C4-C3-C1	112.1 (3)
O1-C1-C3	112.7 (3)	C4-C5-C6	106.0 (4)
O1-C1-C2	106.6 (3)	C8-C7-S1	109.5 (4)
C3-C1-C2	107.1 (3)	C7-C8-S2	114.0 (4)
C1-C2-S1	113.8 (2)	C11-C10-C1	114.7 (4)
C6-C2-S1	108.4 (3)	C10-C11-C5	114.0 (4)
C7-S1-C2-S2	30.0 (3)	C9-O1-C1-C3	-70.9(5)
C2-S1-C7-C8	-37.9 (5)	S1-C2-C1-O1	56.8 (4)
C2-S2-C8-C7	-9.2 (5)	S2-C2-C1-O1	-62.5(3)
C8-S2-C2-S1	-15.6 (3)	S1-C7-C8-S2	31.2 (6)

Atoms H10 and H11 were located in a difference map and refined isotropically [C-H = 0.96 (2)-0.99 (2) Å]. The other H atoms were positioned geometrically, with C-H = 0.96, 0.97 and 0.98 Å for methyl, methylene and methine H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(\text{carrier}$ atom), where x = 1.5 for methyl H atoms and x = 1.2 for all others. Data collection: *XSCANS* (Siemens, 1996); cell refinement:

© 2006 International Union of Crystallography All rights reserved Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s)

All rights reserved

Received 20 January 2006 Accepted 25 January 2006

Figure 1

A view of the molecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

- Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
 Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zeynep Gültekin,^a Harry Adams^b and Tuncer Hökelek^c*

^aZonguldak Karaelmas University, Department of Chemistry, 067100, Zonguldak, Turkey, ^bUniversity of Sheffield, Department of Chemistry, S3 7HF, Sheffield, UK, and ^cHacettepe University, Department of Physics, 06532 Beytepe, Ankara, Turkey

Correspondence e-mail: merzifon@hacettepe.edu.tr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.054 wR factor = 0.127 Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(1*RS*,4*RS*)-1-Methoxyspiro[bicyclo[2.2.2]oct-5-ene-2,2'-[1',3']dithiolane]

The title compound, $C_{11}H_{16}OS_2$, consists of a five-membered dithiolane ring with a methoxybicyclooctene spiro-fused at the 2-position. A few interatomic close contacts seem to influence the geometry of the dithiolane ring.

Received 16 May 2003 Accepted 2 June 2003 Online 17 June 2003

Comment

Ketene equivalents have found widespread use as partners in Diels–Alder reactions for the construction of cyclic, fused and bridged unsaturated ketones (Ranganathan *et al.*, 1977; Aggarwal *et al.*, 1999). The C_2 -symmetric ketene equivalent has been prepared in racemic and enantiomerically pure forms in four steps, and found to be highly reactive and highly diastereoselective (>97:3) in Diels–Alder reactions (Aggarwal *et al.*, 1995). The advantage of this chiral ketene equivalent is that it requires only two steps to remove the chiral auxilary from the cycloadduct (Aggarwal *et al.*, 1995).

Ketene equivalents have also been used in the synthesis of terpenes (Subba Rao & Kalliappan, 1996; Mirrington & Gregson, 1973; Monti & Yang, 1979). 1-Methoxycyclohexa-1,3-diene has been used as a diene in the Diels–Alder reaction (Evans *et al.*, 1972) and it is also a useful diene in the synthesis of terpenoids (Subba Rao & Kalliappan, 1996; Monti & Yang, 1979).

The C_2 symmetric ketene equivalent (Aggarwal *et al.*, 1995) has been investigated with 1-methoxycyclohexa-1,3-diene, under a range of conditions (Aggarwal *et al.*, 1998), giving >97:3 diastereoselectivity in 95% yield.

The title compound, (I), was obtained by reduction of the cycloadduct, according to a literature method (Oea & Drabowicz, 1977). It is a useful starting material for the synthesis of terpenes. The structure determination of (I) was undertaken to understand the effects of the methoxybicyclo-octene system and to compare the results with those found in 1,2,3,4-tetrahydrocarbazole-1-spiro-2'-[1,3]dithiolane, (II) (Hökelek *et al.*, 1994), spiro[carbazole-1(2*H*),2'-[1,3]dithiol-an]-4(3*H*)-one, (III) (Hökelek *et al.*, 1998) and 9-acetonyl-3-ethylidene-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3]dithiol-an]-4-one, (IV) (Hökelek *et al.*, 1999).

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

An *ORTEP*-3 (Farrugia, 1997) drawing of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The title compound, (I), (Fig. 1) consists of a five-membered dithiolane ring with a methoxybicyclooctene spiro-fused at the 2-position; the dithiolane ring adopts a twist conformation. The S atoms of the dithiolane ring have electron-releasing properties, but the O atom of the methoxy group is electron-withdrawing, thereby influencing the bond lengths and angles of the dithiolane ring (Table 1). Some significant changes in the geometry of the dithiolane ring are evident when a few bond angles are compared with the values found in compounds (II)–(IV) (Table 2).

The structure reveals a number of close contacts: S1···H31(C3) 2.562 (38), $O1 \cdot \cdot \cdot H31(C3)$ 2.403 (31), S2···H61(C6) S1···H62(C6) 2.621 (28), 2.602 (48), S2···H10*B*(C10) $O1 \cdots H7A(C7) = 2.639(3),$ 2.556 (2), $O1^{i} \cdots H11A(C11)$ 2.813 (3) and $O^{ii} \cdots H9A(C9)$ 2.869 (3) Å [symmetry codes: (i) x - 1, y, z; (ii) 1 - x, 2 - y, 1 - z]. These interactions may have an influence on the bond lengths and angles and also the shape of the molecule.

Experimental

The title compound, (I), was prepared according to a literature method (Oea & Drabowicz, 1977), from (1S,1'R,3'R)-1-methoxyspiro[(bicyclo[2.2.2]oct-2-ene)-6,2'-(1,3-dithiolane)]-1',3'-dioxide (compound 29*a* in Aggarwal *et al.*, 1998) (0.127 g, 0.49 mmol) in acetone (3 cm³), sodium iodide (0.366 g, 2.44 mmol) and TFAA (trifluoroacetic anhydride; 0.4 cm³, 2.94 mmol) at 195 K for 7 h. The crude sulfide was subjected to flash chromatography, eluting with acetone/petrol (50:50) and yielded the title compound, (I), as a white solid. It was crystallized from petrol ether (yield 0.035 g, 32%), m.p. 331 K.

Crystal data

$C_{11}H_{16}OS_2$	<i>Z</i> = 2
$M_r = 228.36$	$D_x = 1.342 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 6.748 (4) Å	Cell parameters from 25
b = 7.870 (4) Å	reflections
c = 11.474 (7) Å	$\theta = 12 - 20^{\circ}$
$\alpha = 99.23 \ (4)^{\circ}$	$\mu = 0.44 \text{ mm}^{-1}$
$\beta = 103.00 \ (5)^{\circ}$	T = 293 (2) K
$\gamma = 102.69 \ (3)^{\circ}$	Block, colourless
V = 564.9 (6) Å ³	$0.55 \times 0.34 \times 0.28 \text{ mm}$

Data collection

Siemens P4 diffractometer
Non-profiled ω scans
2493 measured reflections
1983 independent reflections
1040 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.037$
$\theta_{\rm max} = 25.0^{\circ}$
D //

Refinement

Table 1

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.127$ S = 1.001983 reflections 147 parameters $k = -9 \rightarrow 9$ $l = -13 \rightarrow 13$ 3 standard reflections every 100 reflections intensity decay: 1%

 $h = -1 \rightarrow 8$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0676P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$

Selected geometric parameters (Å, °). S1-C7 1.811 (4) C1 - C101.507(4)S1-C2 1.826 (3) C1-C31.526 (4) S2-C8 1.782 (5) C4 - C31.521 (5) 1.852 (3) C4-C5 1.532 (5) S2-C201 - C1C11-C10 1.319 (4) 1.412(3)O1-C9 1.421 (4) C11-C5 1.488 (5) C2 - C11.554 (4) 1.547 (6) C5 - C6C2 - C61.560 (4) C7 - C81.462 (6) O1-C1-C3 C7-S1-C2 97.42 (16) 112.3(2)C8-S2-C2 99.37 (16) O1-C1-C2 106.8(2)C1 - O1 - C9 $C_{3}-C_{1}-C_{2}$ 107.1(2)116.0(2)C1 - C2 - S1113.79 (18) C10-C11-C5 114.9(3)C6-C2-S1 108.1 (2) C4-C3-C1 111.7 (3) C1-C2-S2 110.58 (17) C4-C5-C6 105.3 (3) C6-C2-S2 110.6(2)C8-C7-S1 109.3 (3) 113.9 (3) S1 - C2 - S2105 72 (15) C7 - C8 - S2O1-C1-C10 115.5 (2) C11-C10-C1 114.6(3)C7 - S1 - C2 - S230.1(2)S2-C2-C1-O1 -62.4(2)C8-S2-C2-S1 -15.3(2)C2-S1-C7-C8 -38.6(4)C9-O1-C1-C3 -71.4(3)S1-C7-C8-S2 32.1 (4) S1-C2-C1-O1 56.4 (2) C2-S2-C8-C7 -10.1(4)

Table 2

Comparison of the bond angles ($^{\circ}$) in the dithiolane ring of (I) with the corresponding values in the related compounds (II), (III) and (IV).

Angles	(I)	(II)	(III)	(IV)
S1-C2-S2	105.72 (15)	105.8 (2)	106.93 (8)	107.37 (9)
C2-S1-C7	97.42 (16)	94.7 (2)	94.6 (1)	95.04 (9)
C2-S2-C8	99.37 (16)	99.0 (2)	98.4 (1)	97.89 (9)
S2-C8-C7	113.9 (3)	108.3 (4)	109.7 (2)	109.0 (2)
S1-C7-C8	109.3 (3)	106.9 (3)	107.5 (2)	107.2 (1)

Atoms H31, H41, H51, H61 and H62 were located in a difference synthesis and refined isotropically [C-H = 0.87 (4)-1.09 (7) Å]. The remaining H atoms were positioned geometrically at distances of 0.97 Å (CH₂) and 0.96 Å (CH₃) from the parent C atoms; a riding model was used during the refinement process.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to

prepare material for publication: *WinGX* publication routines (Farrugia, 1999).

This work was carried out at the University of Sheffield, UK. We thank Professor Varinder K. Aggarwal of the University of Bristol, UK, for his advice.

References

- Aggarwal, V. K., Ali, A. & Coogan, M. P. (1999). Tetrahedron, 55, 293–312.
- Aggarwal, V. K., Drabowicz, J., Grainger, R. S., Gültekin, Z., Lightowler, M. & Spargo, P. L. (1995). J. Org. Chem. 60, 4962–4963.
- Aggarwal, V. K., Gültekin, Z., Grainger, R. S., Adams, H. & Spargo, L. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2771–2780.
- Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Evans, D. A., Scott, W. L. & Truesdale, L. K. (1972). *Tetrahedron Lett.* 2, 121–124.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297– 1299.
- Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450-453.
- Hökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114-116.
- Mirrington, R. N. & Gregson, R. P. (1973). J. Chem. Soc. Chem. Commun. pp. 598–599.
- Monti, S. A. & Yang, Y. (1979). J. Org. Chem. 44, 897-898.
- Oea, S. & Drabowicz, J. (1977). Synthesis, pp. 404-407.
- Ranganathan, S., Ranganathan, D. & Mehrotra, A. K. (1977). Synthesis, pp. 289–296.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Subba Rao, G. S. & Kalliappan, K. (1996). Chem. Commun. pp. 2231-2232.